

SOME THOUGHTS ABOUT NUCLEAR POWER FOR MARS EXPLORATION

CHARLES WHETSEL

MARS EXPLORATION PROGRAM
PROGRAM FORMULATION OFFICE
JET PROPULSION LABORATORY
FEBRUARY 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Pre-decisional Information for Planning & Discussion

THE INTERPLANETARY RTG FLEET

SNAP-27: Apollo 12-17

MHW-RTG: VGR-1 & 2 (2 ea)

MMRTG: MSL-Curiosity,
Mars 2020

SNAP-19: Pioneer 10/11 (4 ea), Viking 1 & 2 (2 ea)

GPHS-RTG: GLL (2), Ulysses, Cassini(3), Pluto New Horizons

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

LIMITATION OF SOLAR POWER ON THE MARTIAN SURFACE

1) Dust Accumulation – Can Mitigate

MER: Routinely lose ~30% over 300 sol Period (1% / 10 sols)

2) Dust Storm Attenuation – Impractical to mitigate by oversizing; need storage to "weather through" (Batteries? Chemical?)

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

THERMAL ENERGY: LIABILITY OR ASSET?

In general, thermal energy conversion efficiency is desirable (less "waste" heat to reject) – but for several surface applications, heat energy can be just as valuable as electrical energy (also, see later discussion of water mining on Mars)

Pumped Fluid Thermal Management Schematic for Curiosity Rover

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

IN SITU RESOURCE UTILIZATION — LOX/METHANE (1 OF 2): A DIFFERENT KIND OF "ELECTRIC PROPULSION"?

Mars Ascent Vehicle (6 crew)

Dry Mass: ~15,000 kg

Orbital Velocity: 5,000 m/s

Equivalent Energy: 190 Giga-joules / 53 MW-hrs

Rocket Efficiency: ~50%

Methane Energy: 55 Mega-joules/kg

Methane Required: ~7,000 kg

Artists concept Courtesy: NASA MSFC/JSC

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

IN SITU RESOURCE UTILIZATION — LOX/METHANE (2 OF 2): A DIFFERENT KIND OF "ELECTRIC PROPULSION"?

LOX/METHANE PRODUCTION ON MARS

(Masses per 6 crew mission)

ISRU

RTG Fleet

Solar

Thermal

Pre-decisional Information for Planning & Discussion

Water Mining

Role of Hydrogen

WATER MINING ON MARS: TWO STRATEGIES – ONE COMMON ENABLER

Harvest & bake hydrated mineral regolith at surface

Power Source
(e.g. 4x 10 kW fission reactors)

Remote Gypsum-rich deposits

MAV Cabin

Methane Tank
LOX Tank
Fuel Plant
Water Plant

Water Plant

Excavators deliver ore, Remove spent tailings
(larger or smaller depending on Processing temperature)

Either strategy requires
ADDITIONAL ~10-20 kW
(local or remote)

Drill, melt, and recover Sub-surface ice

Abbud-Madrid, A, et al. Mars Water In-Situ Resource Utilization (ISRU) Planning (M-WIP) Study, April, 2016, http://mepag.nasa.gov/reports.cfm.

Lunardini, V.J. and J. Rand (1995). Thermal Design of an Antarctic Water Well. CRREL Special Report 95-10.

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

THE HYDROGEN ECONOMY ON MARS: TRANSPORTABLE COMPANION TO POWER GENERATION INFRASTRUCTURE

Mass: \sim 7,000 kg (Mars gravity = 3/8 earth)

Rolling friction: ~8% (Average terrain)

Reference Speed: 5 m/s (11 mph – 18 km/hr)

Rolling Power: 10 kW

Distance Energy: 2 MJ/km

Closed Loop Regenerative Fuel Cell?

Hydrogen: 142 MJ/kg, BUT 10 MJ/m³ (LH₂)

10 km roundtrip range -> 1.5 m³ of H₂ 100 km roundtrip range -> **15 m³** of H₂!

Pressurized Crew Rover

Artists concept Courtesy: NASA MSFC/JSC

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen

SUMMARY - CLOSING THOUGHTS:

- RTG: Track record, Well-defined set of applications, Mature technology, potential evolution higher-efficiency conversion technologies
- Kilo-power Fission (with Stirling Conversion): Looks very promising for human exploration (including large-scale robotic precursors) for either Mars or the moon. Recommended primary focus area for R&D. Explore opportunities to make excess process heat available for applications that can capitalize on it (pumped fluid systems)
- Should also encourage synergistic work with fuel cells (ideally close—loop, regenerative) using hydrogen (or, if feasible, methane). Need to pay attention to masses, volumes, densities, for mobile applications.

RTG Fleet

Solar

Thermal

ISRU

Water Mining

Role of Hydrogen